Größen mit Dimensionen und Einheiten

Größe	Formel- zeichen	Definition	Dimension	SI-Einheit mit Definition	zum SI inkohährente Einheiten mit Umrechnungsbeziehungen
Länge, Weglänge	l,s	Grundgröße	L	Meter (m) = 1/299 792 458 des Lichtweges in 1 s	Zoll = 25.4 mm, Ångtröm (Å) = 10^{-10} m, Fermi (fm) = 10^{-15} m
Zeit	t	Grundgröße	T	Sekunde (s) = 9192631770 Perioden der 133 Cs-Uhr	Minute (min) = 60 s , Stunde (h) = 60 min , Tag (d) = 24 h , Jahr (a) $\approx 365.24 \text{ d}$
Masse	m	Grundgröße	M	Kilogramm (kg) (noch) definiert durch Prototyp	$Gramm (g) = 10^{-3} kg$
Fläche	A	$\int dA$ $dA = \text{Länge} \times \text{Breite eines rechteckigen Flächenelements}$	L^2	m^2	Barn (b) = $10^{-28} \mathrm{m}^2$
Volumen	V	$\int dV$ $dV = \text{Länge} \times \text{Breite} \times \text{H\"ohe eines quaderf\"ormigen Volumenelements}$	L^3	m^3	Liter (l) = $dm^3 = 10^{-3} m^3$
Dichte	ρ	Masse/Volumen	M/L^3	$kg/(m^3)$	$g/(cm^3) = 10^3 kg/(m^3)$
ebener Winkel	α, β, \dots	Kreisbogen/Radius	Zahl	Radiant (rad)	Grad (°) = $(2\pi/360)$ rad
Raumwinkel	Ω	Kugelsegmentfläche/(Radius) 2	Zahl	Steradiant (sr)	
Frequenz einer Schwingung	f, ν	Anzahl der Schwingungsperioden/Zeit	1/T	1/s = Hertz (nur hierfür!)	
Kreisfrequenz	ω	$\omega = 2\pi f$	1/T	1/s	
Winkelgeschwindigkeit	ω	$\omega = d\alpha/dt$	1/T	1/s	
Geschwindigkeit	\vec{u}, \vec{v}	$\vec{v} = d\vec{s}/dt$	L/T	m/s	km/h = 0.278 m/s
Beschleunigung	\vec{a}	$\vec{a} = d\vec{v}/dt = d^2\vec{s}/dt^2$	L/T^2	m/s^2	
(Bahn-)Impuls	\vec{p}	$\vec{p} = m \vec{v}$	ML/T	kg m/s	
Drehimpuls	$ec{L}$	$ec{L} = ec{r} imes ec{p}$ $r = ext{Bahnradiusvektor}$	$M L^2/T$	${\rm kgm^2/s}$	
Trägheitsmoment	J	$J = \int r^2 dm$	$M L^2$	$ m kgm^2$	
Kraft	$ec{F}$	Ursache der Impulsänderung: $\vec{F} = d\vec{p}/dt$	ML/T^2	Newton (N) = $kg m/s^2$	$dyn = 10^{-5} N,$ Kilopond (kp) $\cong 9.81 N$

Größe	Formel- zeichen	Definition	Dimension	SI-Einheit mit Definition	zum SI inkohährente Einheiten mit Umrechnungsbeziehungen
Drehmoment	$ec{M}$	$ec{M} = ec{r} imes ec{F}$ $r = ext{Hebelarmvektor}$	$M L^2/T^2$	Nm	$kp m \cong 9.81 N m$
Arbeit	W	$W = \int \vec{F} \bullet d\vec{s}$	$M L^2/T^2$	Joule (J) = N m	$kp m \cong 9.81 N m$
Energie	E	jede in Arbeit umwandelbare Größe	$M L^2/T^2$	Joule (J) = N m = W s	erg = 10^{-7} J, Elektronenvolt (eV) $\cong 1.6 \cdot 10^{-19}$ J
Leistung	P	Energieumsatz/Zeit	$M L^2/T^3$	Watt $(W) = J/s$	$PS \cong 736 \mathrm{W}$
Energieflussdichte einer Welle	I	Wellenenergie pro senkrecht von ihr durchsetzte Fläche und Zeit	M/T^3	$ m W/m^2$	
Druck	p	Kraft pro Fläche senkrecht zur Kraftrichtung	$M/(LT^2)$	Pascal (Pa) = N/m^2	$Bar = 10^{5} Pa,$ $Torr = (101 325/760) Pa,$ $phys.Atm. = (101 325) Pa,$ $techn.Atm. = kp/cm^{2}$
Oberflächenspannung	σ	Kraft pro Länge eines Oberflächenrandes	M/T^2	N/m	$dyn/cm = 10^{-3} N/m$
Viskosität	η	Aus der Reibungskraft \vec{F} zwischen zwei Flüssigkeitsschichten: $\vec{F} = \eta A d\vec{v}/dx$ $A = \text{Fläche der Schichten},$ $dv/dx = \text{Geschwindigkeitsgradient } \bot A$	M/(LT)	Pas	Poise (P) = (dyn/cm^2) = 0.1 Pas
Stoffmenge	n	Grundgöße: Anzahl der Teilchen (Moleküle, Atome, Ionen,) eines Stoffsystems/Anzahl der Atome in 12 g isoto- penreinem ¹² C	N	$\bmod \equiv 6.022 \cdot 10^{23} \text{ Teilchen}$	
molare Masse	M	Masse eines Stoffsystems mit der gleichen Anzahl Teilchen wie Atomen in $12\mathrm{g}^{-12}\mathrm{C}$	M/N	kg/mol	
Temperatur thermodynamisch, absolut	T	Grundgröße: definiert durch den Wirkungsgrad $\eta=1-T/T_0$ eines reversiblen Kreisprozesses zwischen T_0 und T . Besitzt absoluten Nullpunkt.	Θ	$ \begin{array}{l} {\rm Kelvin}\; ({\rm K}) = \\ 1/273.16\; {\rm der}\; {\rm thermodynamischen}\; {\rm Tripelpunktstemperatur}\; {\rm von}\; {\rm reinem}\; {\rm Wasser} \\ {\rm ser} \end{array} $	
Temperatur nach Celsius	θ	$\theta = T - 273.15\mathrm{K}$ d. h. Nullpunkt bei 273.15 K	Θ	Grad Celsius (° C) (Schrittlänge = K)	
Temperaturdifferenz	$\Delta T, \Delta \theta$	$\Delta T, \Delta \theta = T_2 - T_1 = \theta_2 - \theta_1$	Θ	K (° C erlaubt)	

Größe	Formel- zeichen	Definition	Dimension	SI-Einheit mit Definition	zum SI inkohährente Einheiten mit Umrechnungsbeziehungen
Wärmemenge	Q	Wärmeform der Energie	Energie E	J	cal = 4.1868 J
Wärmeleitungs- stromdichte	$ec{J}$	aus $\Delta Q=J\Delta A\Delta t$ $\Delta Q=\mbox{W\"{a}rmemenge, die in der Zeit}\Delta t\mbox{durch die Fl\"{a}che}\Delta A$ strömt.	P/L^2	$ m W/m^2$	
Wärmeleitfähigkeit	λ	aus $J = -\lambda dT/dx$ $dT/dx = \text{Temperaturg radient} \perp \Delta A$	$P/(L\Theta)$	W/(mK)	
spezifische Wärmekapazität	c	aus $Q=m\int cdT$ $Q=\text{mit einem K\"{o}rper der }Masse\;m\;\text{ausgetauschte W\"{a}rmemenge}$	$E/(M\Theta)$	J/(kg K)	$cal/(g K) = 4.1868 \cdot 10^3 J/(kg K)$
molare Wärmekapazität (Molwärme)	C^m	aus $Q=n\int C^mdT$ $Q=\text{mit einem K\"{o}rper der }Stoffmenge\ n\ \text{ausgetauschte}$ W\"{armemenge}	$E/(N\Theta)$	J/(mol K)	$\operatorname{cal/(molK)} = 4.1868\operatorname{J/(molK)}$
Entropie	S	$S = n \int_0^T \frac{C^m(T)}{T} dT$	E/Θ	J/K	
elektrische Ladung	Q	Grundgröße	Q = IT	Coulomb $(C) = As$	
elektrische Stromstärke	I	$I=\Delta Q/\Delta t$ $\Delta Q= {\it Ladungsmenge, die in der Zeit } \Delta t {\it durch die Fläche A strömt}$	I = Q/T	Ampere $(A) = C/s$	
elektrische Feldstärke	$ec{E}$	aus $\vec{F} = Q \vec{E}$ $\vec{F} = ext{Kraft auf ruhende Ladung } Q$	F/Q	V/m = N/C	
elektrische Spannung	U	aus $W=Q\int \vec{E} \bullet d\vec{s} = QU$ $W= \text{Arbeit des Feldes } \vec{E} \text{ zum Verschieben der Ladung } Q$ längs \vec{s}	E/Q	Volt (V) = J/C = J/(As)	
Kapazität	C	aus $Q = CU$	Q/U	Farad $(F) = A s/V$	
elektrischer Widerstand	R	R = U/I	U/I	$Ohm (\Omega) = V/A$	
spezifischer elektrischer Widerstand	ρ	aus $R=\rho L/A$ $R=\mbox{Widerstand eines Leiters der Länge}\ L\ \mbox{und dem Querschnitt}\ A$	(U/I)L	Ω m	
elektrische Leistung	P	P = W/t = UI	UI	Watt (W) = V A	

Größe	Formel- zeichen	Definition	Dimension	SI-Einheit mit Definition	zum SI inkohährente Einheiten mit Umrechnungsbeziehungen
magnetische Erregung (mathematische Hilfsgröße)	$ec{H}$	aus $\oint \vec{H} \bullet d\vec{s} = I$ für einen beliebigen geschlossenen Weg \vec{s} um den stationären Strom I	I/L	A/m	Oersted (Oe) = $10^3/(4\pi) \text{A/m}$
magnetische Flussdichte (Feldstärke)	\vec{B}	aus $\vec{F} = Q(\vec{v} \times \vec{B})$ $F =$ Kraft auf die mit der Geschwindigkeit ${\bf v}$ bewegte Ladung Q	$F/(QL/T) = UT/L^2$	Tesla (T) = $V s/m^2$	Gauß (G) = 10^{-4}T
magnetischer Fluss	Φ	$\Phi = \int \vec{B} \bullet d\vec{A}$ $\vec{A} = \text{vom Feld } \vec{B} \text{ durchsetzte Fläche}$	UT	Weber (Wb) = $V s$	$Maxwell (Mx) = 10^{-8} Wb$
magnetisches Moment	$ec{m}$	$\vec{m}=I\vec{A}$ $\vec{A}=$ vom Strom I berandete Fläche. Die Stromumlaufrichtung bildet mit dem Vektor \vec{A} eine Rechtsschraube.	IL^2	$ m Am^2$	
wechselseitige Induktivität	M, L_{12}	aus $U_2 = -M dI_1/dt$ $U_2 =$ Spannung, die im Sekundärkreis durch den im Primärkreis fließenden Strom I_1 induziert wird.	UT/I	Henry (H) = V s/A	
Selbstinduktivität	L	$\begin{array}{l} \text{aus } U = -L dI/dt \\ U = \text{durch } I \text{ induzierte Spannung} \end{array}$	UT/I	Henry (H) = V s/A	
Strahlungsleistung	Φ	von einer Fläche A pro Zeitintervall Δt insgesamt abgestrahlte elektromagnetische Energie	P	W	
raumwinkelbezogene spektrale Strahlungsdichte	L_{λ}	$\begin{array}{l} \text{aus } \Delta\Phi = L_{\lambda}(\lambda,T)\Delta A\cos\theta\Delta\Omega\Delta\lambda \\ \Delta\Phi = \text{vom Flächenelement } \Delta A\text{mit der Temperatur } T\text{in} \\ \text{den } \textit{Raumwinkel } \Delta\Omega\text{emittierte Strahlungsleistung aus dem} \\ \text{Wellenlängenintervall } (\lambda,\lambda+\Delta\lambda),\theta = \text{Abstrahlungswinkel} \end{array}$	$P/(L^2L)$	$ m W/(m^2m)$	
spezifische Ausstrahlung	M_{λ}	$\begin{array}{l} \text{aus } \Delta\Phi = M_{\lambda}(\lambda,T)\Delta A\Delta\lambda \\ \Delta\Phi = \text{vom Flächenelement } \Delta A \text{ mit der Temperatur } T \text{ in den} \\ gesamten \ Halbraum \ \text{emittierte Strahlungsleistung aus dem} \\ \text{Wellenlängenintervall } (\lambda,\lambda+\Delta\lambda) \end{array}$	$P/(L^2L)$	$ m W/(m^2m)$	
totale Ausstrahlung	M	$M(T) = \int_0^\infty M_\lambda(\lambda, T) d\lambda$	P/L^2	$ m W/m^2$	
Aktivität einer Menge einer radioaktiven Substanz	A	Anzahl der Zerfälle pro Zeitintervall	1/T	Becquerel (Bq) = $1/s$	Curie (Ci) = $3.7 \cdot 10^{10} \text{Bq}$