I Teilversuche

Ι

Ι

Ideale Gase/Phasenübergänge - GAS

Fakultät für Physik der Ludwig-Maximilians-Universität München – Grundpraktikum für Zahnmediziner (20. AUGUST 2022)

MOTIVATION UND VERSUCHSZIELE

Die Atmung ist einer der wichtigsten physiologischen Prozesse im menschlichen Körper. Um sie zu verstehen, braucht man Kenntnisse über die physikalischen Grundlagen. Beim Einatmen kommt es zu einer Erweiterung des Brustkorbes, dies führt zu einer Vergrößerung des Lungenvolumens. Entsprechend wird der Luftdruck in der Lunge kleiner als der äußere Luftdruck und Luft strömt zum Ausgleich in die Lunge hinein. Die eingeatmete Luft wird dabei durch Wärmeaustausch auf die Körpertemperatur gebracht. Zusätzlich wird die Atemluft im Nasen-/Rachenraum und vor allem in den Bronchien durch Verdunsten von Wasser befeuchtet. Beim Ausatmen wird das Lungenvolumen verkleinert. Der Luftdruck in der Lunge heraus. Weil die Luft ein Gasgemisch ist, sind bei allen diesen Prozessen Gase mit unterschiedlichen Partialdrucken beteiligt. Das physikalische Gebiet, das sich mit dieser Thematik beschäftigt, nennt man Wärmelehre (vgl. KAL). In diesem Versuch werden Sie sich mit experimentellen Untersuchungen zur idealen Gasgleichung, zu Zustandsänderungen, Aggregatzuständen und Phasenübergängen am Beispiel von Wasser beschäftigten.

Contents

2

		2
п.	Physikalische Grundlagen	2
	II.1. Ideale Gase	2
	1. Zustandsgleichung idealer Gase	2
	2. Zustandsänderungen idealer Gase	3
	3. Bestimmung der Lage des absoluten Temperaturnullpunktes	4
	II.2. Reale Gase	4
	1. Aggregatzustände	4
	2. Phasenübergänge	4
	3. Van der Waals'sche Zustandsgleichung	5
	4. Phasendiagramm von Wasser	5
п.	Versuchsaufbau und Geräte	8
	III.1. Zubehör	8
	III.2. Versuchsaufbau zur Gasmechanik	8
	III.3. Druckmessung	8
	III.4. Volumenänderung	9
	III.5. Versuchsaufbau zum Heimversuch	10
	1. Versuchsgerät	10
	2. Ablesemethode für das Volumen	10
	III.6. Versuchsaufbau zur Messung der Dampfdruckkurve	10
v.	Versuchsdurchführung	10
	IV.1. Volumenbestimmung der Glashohlkugel und Überprüfung der Apparaturdichtigkeit	11
	1. Kurzbeschreibung	11
	2. Messgrößen und Durchführung	11
	IV.2. Isotherme Zustandsänderung:	
	Überprüfung des Boyle-Marioteschen Gesetzes	11
	1. Kurzbeschreibung	11
	2. Messgrößen und Durchführung	11
	IV.3. Isotherme Zustandsänderung	
	Überprüfung des Gesetzes von Boyle-Mariotte im Heimversuch	12
	1. Kurzbeschreibung	12
	2. Messgrößen und Durchführung	12
	IV.4. Isochore Zustandsänderung: Bestimmung der Lage des absoluten Temperaturnullnunktes	13
	1. Kurzbeschreibung	13
		10

v

	2. Messgrößen und Durchführung	13
	IV.5. Ermittlung der Dampfdruckkurve reinen Wassers	14
	1. Kurzbeschreibung	14
	2. Messgrößen und Durchführung	14
ν.	Auswertung	14
	V.1. Vorbereitung	14
	V.2. Isotherme Zustandsänderung:	
	Überprüfung des Boyle-Mariotteschen Gesetzes	14
	V.3. Isotherme Zustandsänderung:	
	Überprüfung des Gesetzes von Boyle-Mariotte im Heimversuch	15
	V.4. Isochore Zustandsänderung: Bestimmung der Lage des absoluten Temperaturnullpunktes	15
	V.5. Ermittlung der Dampfdruckkurve reinen Wassers	15
т.	Anhang	15
	VI.1. Dichteanomalie des Wassers	15

I. TEILVERSUCHE

- 1. Volumenbestimmung der Glashohlkugel und Überprüfung der Apparaturdichtigkeit
- 2. Isotherme Zustandsänderung: Überprüfung des Boyle-Mariotteschen Gesetzes
- 3. Isotherme Zustandsänderung: Überprüfung des Gesetzes von Boyle-Mariotte im Heimversuch (Alternativ zu Teilversuch 1 und 2)
- 4. Isochore Zustandsänderung: Bestimmung des absoluten Temperaturnullpunktes
- 5. Ermittlung der Dampfdruckkurve reinen Wassers

II. PHYSIKALISCHE GRUNDLAGEN

II.1. Ideale Gase

Die Modellvorstellung eines idealen Gases ist folgende: Auf die Teilchen des Gases wirken keine Anziehungskräfte. Die Abstände zwischen den Gasteilchen sind so groß, dass die Gasteilchen sich ungehindert durch den Raum bewegen und ihre Energie über elastische Stöße austauschen. Es handelt sich um ein Modell, das umso besser erfüllt ist, je größer die kinetische Energie der Gasteilchen gegenüber der potentiellen ist (kleiner Durchmesser der Gasteilchen, große mittlere freie Weglänge¹). Alle Gase können bei geringen Dichten und höheren Temperaturen als ideal betrachtet werden.

Abb. 1: Ungünstige (links) und günstige (rechts) Voraussetzungen für das Modell eines idealen Gases

1. Zustandsgleichung idealer Gase

Der Zustand eines idealen Gases läßt sich durch die Zustandsvariablen (Zustandsgrößen) Druck $p([p] = \frac{N}{m^2} =$ Pa), Temperatur T ([T] = K), Volumen V ($[V] = m^3$) und Teilchenanzahl N beschreiben². Die Zustandsvariablen hängen über die allgemeine Gasgleichung zusammen:

$$p \cdot V = N \cdot k_{\rm B} \cdot T \tag{1}$$

Die in Gl. (1) enthaltene Boltzmannkonstante ist gegeben durch

$$k_{\rm B} \approx 1.38 \cdot 10^{-23} \frac{\rm J}{\rm K}.$$
 (2)

In makroskopischen Systemen ist die Teilchenanzahl Nriesig (über 10¹⁷). Um solche riesigen Zahlen zu vermeiden, fasst man $N_A = 6,022 \cdot 10^{23}$ Teilchen zu einem Mol zusammen. Dadurch definiert man eine neue Grundgröße, die **Stoffmenge** n mit der Einheit mol. Es gilt:

$$N = N_{\rm A} \cdot n \tag{3}$$

 ${\cal N}_A$ heißt Avogadrokonstante oder Loschmidtsche Zahl. Sie beträgt

$$N_{\rm A} = 6,022 \cdot 10^{23} \frac{1}{\rm mol} \tag{4}$$

¹ Unter der mittleren freien Weglänge versteht man den mittleren Weg zwischen zwei Stößen.

² Für genauere Definitionen der Zustandsvariablen vergleichen Sie auch die Anleitungen zu KAL und FLU.

und gibt die Anzahl der Teilchen in einem Mol an. Mit Gl. (3) folgt aus Gl. (1)

$$p \cdot V = n \cdot N_{\mathcal{A}} \cdot k_{\mathcal{B}} \cdot T. \tag{5}$$

Man führt eine neue Konstante ein

$$R = N_{\rm A} \cdot k_{\rm B} \tag{6}$$

und nennt sie die allgemeine Gaskonstante. Aus Gl.(6)folgt

$$R \approx 8.31 \frac{\mathrm{J}}{\mathrm{mol} \cdot K}.$$
 (7)

Durch Einsetzen von Gl. (6) in Gl. (5) ergibt sich

$$p \cdot V = n \cdot R \cdot T. \tag{8}$$

Gl. (8) gibt den gleichen Sachverhalt wieder wie Gl. (1), bezieht sich aber auf die Stoffmenge statt auf die Teilchenzahl.

Unter Verwendung von Gl. (8) lässt sich das Volumen berechnen, das 1 mol unter Normalbedingungen, d.h. $T_n = 273,15$ K und Atmosphärendruck auf Meereshöhe $p_n = 101325$ Pa = 1013,25 hPa = 1013,25 mbar=1,01325 bar= 760 mmHg, einnimmt. Das molare Volumen (Volumen pro Stoffmenge, also bezogen auf 1 mol) ist damit $V_{\rm m} \approx 0,022$ m³ = $22 \cdot 10^3$ cm³. Das Volumen entspricht einem Würfel mit der Kantenlänge 28 cm.

 ${f Rechenaufgabe 1:}$ Berechnen Sie die allgemeine Gaskonstante.

Blutdruck

Im Blutkreislauf werden Drucke in mmHg (=Torr, 1 Torr=133,32 Pa) gemessen. Mit der Blutdruckangabe "120 zu 80" ist folgendes gemeint: Der systolische Druck ist um 120 mmHg größer als der aktuelle Luftdruck und der diastolische arterielle Druck ist um 80 mmHg größer als der Luftdruck. Der venöse Druck liegt mit 0 bis 5 mmHg nahe beim Luftdruck.

Rechenaufgabe 2: Eine Luftblase hat auf dem Grund eines Sees in 37,0 m Tiefe bei $5,5^{\circ}$ *C* ein Volumen von 1,00 cm³. An der Oberfläche des Sees beträgt die Temperatur 21 \circ *C* und der Druck 1013,25 hPa. Wie groß ist das Volumen der Luftblase kurz vor der Oberfläche?

2. Zustandsänderungen idealer Gase

Betrachtet man eine gegebene Gasmenge, etwa die in einem Autoreifen eingeschlossene, so ist die Teilchenzahl N konstant und es gilt nach Gl. (1) oder Gl. (8) für beliebige Wertetripel (p, V, T):

$$\frac{p_1 V_1}{T_1} = \frac{p_2 V_2}{T_2} = \dots = \text{const.}$$
(9)

Hält man eine der drei Größen p, V oder T konstant, vereinfacht sich Gl. (9) weiter. Man unterscheidet drei Spezialfälle für Zustandsänderungen:

1. T = const.: Isotherme Zustandsänderung Die allgemeine Gasgleichung wird zu:

$$p \cdot V = \text{const}_T \tag{10}$$

Gl. (10) wird auch Boyle-Mariottesches Gesetz genannt. Trägt man p gegen V in einem so genannten p-V-Diagramm grafisch auf, so erhält man Hyperbeln (siehe Abb. 2, links). Zur grafischen Überprüfung von Gl. (10) eignen sich Hyperbeln nicht. Man formt so um, dass sich eine Gerade ergibt bzw. ergeben sollte. Da $\frac{p}{1/V} = p \cdot V = \text{const. ist}$, trägt man p gegen 1/V auf. Das Gesetz wird bestätigt, wenn sich eine Gerade ergibt (siehe Abb. 2, rechts). Analoges gilt bei Auftragen von 1/pgegen V.

Abb. 2: Isotherme Zustandsänderung

 p = const.: Isobare Zustandsänderung Die allgemeine Gasgleichung wird zu:

$$V = \operatorname{const}_{n} \cdot T \tag{11}$$

Grafisch ergibt sich durch Auftragen von V gegen T ein linearer Verlauf (Abb. 3 links). Gl. (11) wird auch als Gesetz von Gay-Lussac bezeichnet.

3. V = const.: Isochore Zustandsänderung Die allgemeine Gasgleichung wird zu:

$$p = \operatorname{const}_V \cdot T \tag{12}$$

Grafisch ergibt sich durch Auftragen von p gegen T ein linearer Verlauf (Abb. 3 rechts). Gl. (12) wird auch Gesetz von Amontons genannt.

Isobare und isochore Zustandsänderungen werden durch Nullpunktsgeraden wiedergegeben. In der Nähe des Koordinatenursprungs stellen die Geraden lediglich mathematische Extrapolationen ohne physikalische Bedeutung dar, da hier die Voraussetzungen für das Modell eines idealen Gases nicht mehr erfüllt sind.

Abb. 3: Isobare Zustandsänderung (links) und Isochore Zustandsänderung (rechts)

Atmung und Partialdruck

Beim Einatmen kommt es zu einer Erweiterung des Brustkorbes

(Thorax) in transversaler und sagittaler Richtung, was durch die dafür ausgelegte Anatomie der Rippen ermöglicht wird und zu einer Kontraktion des Zwerchfells führt. Dabei folgt die Lunge passiv den Thorax- und Zwerchfellbewegungen. Gleichzeitig wird das Lungenvolumen $V_{\rm L}$ vergrößert. Der Gasmechanik entsprechend wird der Luftdruck in der Lunge kleiner (als der äußere Luftdruck) und Luft strömt zum Ausgleich in die Lunge ein. Das Ausatmen erfolgt weitgehend passiv, d.h. die beim Einatmen in Spannung versetzten elastischen Fasern der Lunge bringen diese und den Thorax in die Ausgangstellung zurück. Folglich wird das Thoraxvolumen und damit V_L kleiner und der Luftdruck in der Lunge wird zunächst größer als der äußere Luftdruck. Zum Druckausgleich strömt beim Ausatmen Luft aus der Lunge heraus. Bei der künstlichen Beatmung wird durch Druckausübung auf den Brustkorb die Ausatmung erzwungen ($V_{\rm L}$ wird kleiner und folglich der Luftdruck in der Lunge größer). Durch zusätzliches Anheben der Arme wird der Brustkorb angehoben. Das Volumen V_I, wird vergrößert und folglich der Luftdruck in der Lunge verkleinert. Deshalb strömt Luft in die Lunge ein.

Die Luft besteht im Mittel aus 21 % Sauerstoff, 78 % Stickstoff und 1 % Restgasmolekülen (wie CO₂ u.a.). Auf Meereshöhe beträgt der Luftdruck $p_{ges} = 1013$ hPa (=101300 Pa). Jedes Gas aus dem Gasgemisch der Luft trägt entsprechend seines Anteils (**Partialdruck**) zum Gesamtdruck bei: 213 hPa (Sauerstoff), 790 hPa (Stickstoff), 10 hPa (Rest). Auf dem Weg durch den Nasen-Rachen-Raum und die Bronchien wird die eingeatmete Luft mit gasförmigem Wasser gesättigt, so dass der Partialdruck von Wasser 62,7 hPa beträgt. Vom Gesamtdruck 1013 hPa bleiben also ungefähr 950 hPa für die anderen Atemgase übrig. In den Bronchien herrschen demnach beim Einatmen die Partialdrucke: 200 hPa (Rest). In den Alveolen verändern sich die Partialdrucke durch den Gasaustausch mit dem Blut.

In der Lungenphysiologie werden Drucke oft in cm H₂O angegeben. Man erfaßt damit kleinere Druckeinheiten: 1 cm H₂O \approx 1 hPa \approx 1 mbar.

Rechenaufgabe 3: In den Lungen eines Bergbewohners befinden sich bei einem Volumen von 5 L und 37° C: 13,5 mmol Sauerstoff, 85 mmol Stickstoff, 7,5 mmol Kohlendioxid und 12,5 mmol Wasserdampf. Es gelten näherungsweise die Bedingungen für ideale Gase. Der Gesamtdruck beträgt 61 kPa. Wie groß ist der (mittlere) Sauerstoff-Partialdruck in den Lungenalveolen? (Hinweis: Es gibt zwei Lösungsmöglichkeiten, eine von beiden genügt.)

3. Bestimmung der Lage des absoluten Temperaturnullpunktes

In einen abgeschlossenen Volumen misst man den Druck p in Abhängigkeit von der Temperatur im Bereich von 0 °C bis zum Siedepunkt. Das Symbol θ bezeichnet dabei Temperaturen in der Einheit °C. Trägt man die Messwerte grafisch in der Einheit °C auf, erhält man Abb. 4. Es ergibt sich eine Gerade $p(\theta) = b + a\theta$ mit positiver Steigung a und positivem Achsenabschnitt b. Die Gerade schneidet die p-Achse beim Wert $b = p_0$, dem Druck bei der Temperatur $\theta = 0$ °C (der am Meeresspiegel dem Normalwert 1013,25 hPa hat). Die Gerade schneidet die θ -Achse bei $\theta_{\rm C}$, d. h. $p(\theta_{\rm C}) = 0$. In Gasen gibt es keinen negativen Druck, d.h. $\theta_{\rm C}$ ist hier die niedrigste erreichbare Temperatur, der absolute Nullpunkt:

$$\theta_{\rm C} = -273, 15^{\circ}{\rm C}$$
 (13)

Abb. 4: Graphische Bestimmung der Lage des absoluten Temperaturnullpunktes

II.2. Reale Gase

Bei realen Gasen müssen die Wechselwirkungskräfte der Gasteilchen berücksichtigt werden. Bei tiefen Temperaturen und hohen Drucken nimmt der mittlere Abstand der Gasteilchen und ihr mittlerer Impuls ab. Die Geschwindigkeit einiger Teilchen ist nicht groß genug, um die Anziehungskraft zwischen diesen Gasteilchen zu überwinden. Sie gehen feste Bindungen miteinander ein. Mit abnehmender Temperatur und zunehmendem Druck werden die molekularen Verbände zunehmend größer.

1. Aggregatzustände

Nach dem Ordnungsgrad unterscheidet man drei Zustandsformen der Materie: fest, flüssig, gasförmig. Man spricht auch von **Aggregatzuständen** oder **Phasen** (makroskopisch homogene Teilbereiche eines Systems). In einem Gas bewegen sich die Teilchen nahezu frei durcheinander. Es gibt keine geordnete Struktur. In einer Flüssigkeit jedoch sind einige Teilchen aneinander gebunden. Eine lokale Ordnung ist vorhanden (Nahordnung), aber die Bausteine sind gegeneinander verschiebbar und bewegen sich unregelmäßig. Im Festkörper nehmen die Teilchen feste Plätze ein. Die Bewegung der Teilchen beschränkt sich auf kleine Auslenkungen um ihre Ruhelage. Ein Festkörper hat den größten Ordnungsgrad.

2. Phasenübergänge

Der Aggregatzustand einer Substanz lässt sich durch Variation ihrer Temperatur verändern. Führt man einem Festkörper von außen stetig Wärme zu und misst gleichzeitig seine Temperatur, so erhält man in etwa einen Kurvenverlauf wie in Abb. 5 dargestellt. Die Schwingungsamplituden der Teilchen um ihre Ruhelage nehmen zu, die Temperatur des Festkörpers steigt linear an (vgl. KAL). Bei weiterer Energiezufuhr wird die Bewegung der Teilchen so stark, dass sie sich aus dem Kristallgitter lösen, die Substanz beginnt zu schmelzen (Schmelzpunkt $T_{\rm S}$). Die für das Schmelzen nötige Wärme bezeichnet man als **Schmelzwärme**. Während

Abb. 5: Qualitative Darstellung des Temperaturverlaufs bei stetiger Wärmezufuhr und Atmosphärendruck.

des Schmelzens wird die zugeführte Wärme nur zum Auflösen der Bindungen verwendet, sodass die Temperatur während des gesamten Schmelzvorgangs konstant bleibt. Erst nach dem Schmelzen steigt die Temperatur weiter an, bis der Verdampfungspunkt $T_{\rm V}$ erreicht ist. Dort ist der Verlauf ähnlich. Die Temperatur bleibt zunächst konstant, bis die Substanz vollständig verdampft ist. Die für das Verdampfen nötige Wärme bezeichnet man als Verdampfungswärme. Erst dann steigt die Temperatur des Gases weiter an. In Abb. 5 ist zu erkennen, dass es Bereiche gibt, in denen zwei Phasen gleichzeitig existieren, sogenannte Koexistenzbereiche. Unter bestimmten Bedingungen (siehe Abb. 7) kann ein fester Körper auch **sublimieren**, d.h. direkt vom festen in den gasförmigen Zustand übergehen. Ein Beispiel für den direkten Übergang von gasförmigen zu festem Zustand (Resublimation) ist die Bildung von Raureif. Schmelzwärme, Verdampfungswärme und Sublimationswärme sind latente Wärmen, die allein zur Phasenumwandlung aufgewendet werden. Dem Energieerhaltungssatz entsprechend werden diese Wärmemengen wieder frei, wenn die Phasenumwandlungen in entgegengesetzter Richtung ablaufen, wenn also eine Flüssigkeit erstarrt (gefriert) oder Dampf kondensiert. Verbrennungen mit 100°C heißem Wssserdampf verursachen sehr viel stärkere Schäden als mit Wasser gleicher Temperatur, weil bei Dampf zusätzlich die Verdampfungswärme frei wird (gleiche Stoffmengen von Dampf und Flüssigkeit vorausgesetzt).

3. Van der Waals'sche Zustandsgleichung

Für ein ideales Gas ist der Zusammenhang zwischen den Zustandsgrößen Druck, Volumen und Temperatur durch die allgemeine Gasgleichung gegeben. Diese ist jedoch zur Beschreibung des Phasenübergangs gasförmig/flüssig (und umgekehrt) nicht geeignet. Hier verwendet man die van der Waals'sche Zustandsgleichung:

$$(p + \frac{a}{V_{\rm m}^2})(V_{\rm m} - b) = R T$$
 (14)

 $V_m = \frac{V}{n}$ bezeichnet das molare Volumen. Die Größe a/V_m^2 heißt Binnendruck oder Kohäsionsdruck und berücksichtigt die gegenseitige, anziehende Wechsel-

Abb. 6: a) Isothermen eines realen Gases im pV-Diagramm; b) Dampfdruckkurve

wirkung der Moleküle. Der Binnendruck wirkt wie eine Vergrößerung des Außendrucks. Die Größe b heißt Kovolumen und entspricht dem vierfachen Eigenvolumen der Moleküle. Es stellt die untere Begrenzung von $V_{\rm m}$ dar (flüssiger Zustand). Für hohe Temperaturen und große Molvolumina sind die Korrekturgrößen $a/V_{\rm m}^2$ und b vernachlässigbar und Gl. (14) geht in die Zustandsgleichung des idealen Gases über. Abb. 5a zeigt die Isothermen eines van der Waals-Gases im p-V-Diagramm. Die zu höheren Temperaturen gehörenden Isothermen entsprechen erwartungsgemäß denen des idealen Gases. Unterhalb einer kritischen Temperatur $T_{\mathbf{k}}$ und innerhalb des in Abb. 5a als Zweiphasengebiet gekennzeichneten Bereichs durchlaufen die Isothermen abweichend von Gl. 14 horizontale Geraden, d.h. der Druck bleibt bei Volumenverringerung (für T = const.) unverändert. Dies geschieht durch Kondensation eines Teils des Gases in den flüssigen Zustand, einsetzend an der Taugrenze und fortschreitend bis zur vollständigen Kondensation an der Siedegrenze. Dann steigt der Druck steil an, da Flüssigkeiten nur eine geringe Kompressibilität besitzen. Die gasförmige Phase unterhalb der kritischen Isotherme wird auch Dampf genannt. Oberhalb der kritischen Isotherme ist eine Verflüssigung allein durch Kompression bei konstanter Temperatur nicht möglich. Der kritische Punkt KP ist durch einen Wendepunkt der kritischen Isotherme mit horizontaler Tangente (Terrassenpunkt) gekennzeichnet. Die kritischen Größen T_k , p_k und V_{mk} lassen sich daher aus der van der Waalsschen Gleichung berechnen.

4. Phasendiagramm von Wasser

Stellt man den Druck einer Substanz in Abhängigkeit von der Temperatur grafisch dar, so erhält man ein **Phasendiagramm**. Abb. 7 zeigt das Phasendiagramm für reines Wasser. Man erkennt ausgedehnte Gebiete, in denen nur eine einzige Phase existiert (fest, flüssig oder gasförmig). An den Grenzen der Gebiete gibt es Kurven, auf denen jeweils zwei Phasen im dynamischen **p**/bar

221

1.0

Abb. 7: Phasendiagramm von Wasser (Tripelpunkt TP $(T_{\rm t},p_t),$ kritischer Punkt KP $(T_{\rm k},p_{\rm k})$

Gleichgewicht sind (**Koexistenzkurven**). Zwei Phasen, z.B. Flüssigkeit und Gas, befinden sich im dynamischen Gleichgewicht, wenn von der Oberfläche der Flüssigkeit genau so viele Moleküle austreten, wie umgekehrt wieder eintreten (vgl. Abb. 8).

Der im Gleichgewicht herrschende Druck wird Sättigungsdampfdruck p_d oder kurz Dampfdruck genannt. Er hängt nur von der Temperatur ab. Das Phasendiagramm in Abb. 9 zeigt die **Dampfdruckkurve** von Wasser. Mit zunehmender Temperatur steigt die Dich-

Abb. 8: Flüssigkeit und Dampf im dynamischen Gleichgewicht: Im Mittel treten genauso viele Teilchen in den Dampfraum ein wie aus. Der **Dampfdruck** entsteht durch die thermische Bewegung der Teilchen im Dampf, die mit der Temperatur zunimmt. Da auch die Anzahl der gasförmigen Teilchen mit der Temperatur zunimmt, steigt der Dampfdruck stärker als linear mit der Temperatur.

te des Dampfes und die der Flüssigkeit nimmt ab. Am sogenannten **kritischen Punkt** KP (T_k, p_k) sind beide gleich, flüssige und gasförmige Phase lassen sich nicht mehr voneinander unterscheiden. Der kritische Punkt ist für die betreffende Substanz spezifisch. Für Wasser liegt er bei 374°C und 221 bar. Oberhalb der kritischen Temperatur T_k kann man ein Gas nicht mehr verflüssigen, es liegt eine einheitliche Phase vor. Zur Unterscheidung nennt man die Gasphase unterhalb von T_k meist Dampf, oberhalb von T_k Gas.

Kühlt man die Flüssigkeit ab, so wird etwas Dampf kon-

Abb. 9: Erhöhung der Temperatur von T_1 auf T_2 führt zunächst zur Störung des dynamischen Gleichgewichts. Es verdampfen zusätzliche Teilchen bis sich der Dampfdruck p_2 eingestellt hat und sich das System wieder im Gleichgewicht befindet.

densieren. Der Dampfdruck wird also geringer, bis sich erneut ein Gleichgewicht eingestellt hat, d.h. der Zustand auf der Dampfdruckkurve von Abb. 7 liegt. Erreicht die Flüssigkeit den **Tripelpunkt** TP, beginnt sie zu erstarren (gefrieren). An diesem Punkt befinden sich alle drei Phasen (fest, flüssig, gasförmig) miteinander im Gleichgewicht. Auch der Tripelpunkt ist für die betreffende Substanz spezifisch. Für Wasser liegt er bei 273,16 $K = 0,01^{\circ}$ C und 6,105 mbar. Bei Drucken unterhalb des Tripelpunkts existiert keine flüssige Phase. Schließt man einen festen Körper in ein evakuiertes Gefäß ein, so sublimiert so viel zu Gas, bis sich ein dynamisches Gleichgewicht eingestellt hat. Auch hier hängt der Dampfdruck von der Temperatur ab (**Sublimationskurve**).

Die Schmelzkurve in Abb. 7 gibt Gleichgewichtsbedingungen für die Phasen fest und füssig an. Die Schmelzkurve von H₂O unterscheidet sich wesentlich von denen anderer reiner Substanzen. Während die Phasengrenzkurve fest-flüssig bei H₂O eine negative Steigung hat (d. h. die Schmelztemperatur nimmt mit steigendem Druck ab), ist die Steigung dieser Geraden bei nahezu allen anderen Stoffen positiv. Man bezeichnet dieses Phänomen als Anomalie des Wassers. Sie ist verknüpft mit der Dichteanomalie des Wassers (vgl. Unterkapitel VIVI.1.) Die Dampfdruck-, Sublimationsund Schmelzkurven geben die Druckabhängigkeit des Siede-, Sublimations- und Schmelzpunktes wieder. Die Dampfdruckkurve besagt, dass bei niedrigerem Luftdruck auch die Siedetemperatur geringer ist. (In München ist die Siedetemperatur bei ca. 98°C, auf der Zugspitze bei ca. 90°C, man kann dort schlechter kochen. Auf dem Mt. Everest siedet Wasser bei ca. 70°C, das ist nur etwas heißer als heißes Wasser aus dem Wasserhahn). Abb. 10 zeigt die Abhängigkeit der Siedetemperatur von Wasser vom äußeren Luftdruck, also einen Ausschnitt des Diagramms in Abb. 7 mit vertauschten p- und T-Achsen. Die Temperaturabhängigkeit des Dampfdrucks (oder die Druckabhängigkeit von Siede- und Sublimationspunkt) lässt sich folgendermaßen verstehen: Bei niedriger Temperatur hat nur ein geringer Anteil der Moleküle in der flüssigen (oder der festen) Phase die nötige Energie, um die Flüssigkeit (bzw. den Festkörper) verlassen zu können. Mit steigender Temperatur wächst dieser Anteil. Die Zahl der zurückkehrenden Moleküle andererseits steigt

Abb. 10: Siedetemperatur von Wasser in Abhängigkeit vom Druck: Eine Flüssigkeit siedet, wenn ihr Dampfdruck gleich dem äußeren Druck ist, weil sich erst dann Blasen in der Flüssigkeit bilden können.

mit dem Druck in der Dampfphase an (siehe Abb. 8). Die Dampfdruck-, Sublimations- und Schmelzkurven lassen sich durch Zugabe von nichtflüchtigen Komponenten ins Wasser verändern. Bespielsweise wird die Dampfdruckkurve zu niedrigeren Drucken (nach unten parallel) und die Schmelzkurve zu niedrigeren Temperaturen (nach links parallel) verschoben. Dies führt zu einer Erhöhung der Siedetemperatur und einer Erniedrigung der Schmelztemperatur bei dem gleichen äußeren Luftdruck. Dies macht man sich beim Ausbringen von Streusalz zu Nutze. **Rechenaufgabe 4:** Wasser am Fuße des Kilimandscharo siedet bei einer höheren Temperatur, als (gleichzeitig) an dessen Gipfelkrater! Erklären Sie diesen Sachverhalt anhand des beschrifteten Phasendiagramms (jede Linie, jeden Punkt und jeden Bereich),

Luftfeuchtigkeit, Taupunkt und Atmung

Unser Wärmeempfinden hängt weniger als allgemein angenommen von der Temperatur der umgebenden Luft ab. Entscheidend ist vielmehr die Luftfeuchtigkeit. Welcher Gleichgewichtszustand stellt sich ein, wenn sich Wasser und Luft in einem abgeschlossenen Gefäß befinden, dessen Temperatur T konstant gehalten wird? Aus der Dampfdruckkurve (Abb. 7) kann der zur Temperatur gehörige Dampfdruck des Wassers abgelesen werden (er hängt nur von der Temperatur ab, die Anwesenheit der Luft verändert ihn nicht.). Es verdunstet so lange Wasser, bis der Partialdruck des gasförmigen Wassers dem Dampfdruck entspricht. Mehr kann nicht verdunsten, da sich sonst Nebeltröpfchen bilden (Taubildung). Somit kann jeder Temperatur ein maximaler Wassergehalt der Luft f_{max} (gemessen in $\frac{gH_2O}{m^3Luft}$) zugeordnet werden. Die zugehörige Kurve wird als Taupunktkurve bezeichnet (Abb. 11). Da Wasser nur sehr langsam verdunstet, ist unsere Umgebungsluft üblicherweise nicht gesättigt (f_{max} wird nicht erreicht.).

Man unterscheidet zwischen absoluter Luftfeuchtigkeit f (gemes-

Abb. 11: Taupunktkurve. Maximaler Wassergehalt in der Luft als Funktion der Temperatur

sen in $\frac{gH_2O}{m^3Luft}$) und relativer Luftfeuchtigkeit $f_{rel} = \frac{f}{f_{max}}(d.h.)$ das Verhältnis des tatsächlichen Wassergehaltes zum Wassergehalt bei Sättigung). Die Taupunktkurve ermöglicht es, den Wassergehalt der Luft auszudrücken durch diejenige Temperatur, bei der die Luft mit Wasser gesättigt wäre. Man bezeichnet sie als Taupunkt. Durch unsere Haut wird täglich knapp ein Liter Wasser abgegeben (auch wenn kein Schweißfilm sichtbar ist). Trockene Luft wird daher als unangenehm kühl empfunden, da das Wasser schnell verdunstet und dem Körper Wärme entzogen wird. Dagegen kann in sehr feuchter Luft kaum Wärme durch Schwitzen abgegeben werden, weil die Luft nahezu mit Wasser gesättigt ist (Luftfächeln, um die Verdunstung zu beschleunigen). Besonders wichtig ist der Taupunkt im Zusammenhang mit der Atmung. Die Atemluft wird im Nasen-Rachen-Raum und in den Bronchien nicht nur erwärmt, sondern auch befeuchtet; sie muss mit Wasser gesättigt sein, um die Alveolen vor Kollaps zu schützen. Nach dem Gesetz von Laplace ist der Druck in einer Alveole

$$p = \frac{2\sigma}{r} \tag{15}$$

mit Oberflächenspannung σ (siehe Versuch FLU) und Alveolen-

radius r. Falls sich die Oberflächenspannung vom Radius unabhängig ist, ist der Druck in den kleinen Alveolen größer als in den großen Alveolen und die kleinen Alveolen entleeren sich in die größeren Alveolen und kollabieren. Da aber die Innenfläche der Alveolen mit einer Flüssigkeit – "Surfactant" genannt – bedeckt ist, reduziert diese Flüssigkeit die Oberflächenspannung und erleichtert unter anderem die Atmung. Wenn eine Alveole sich ausdehnt, reicht die Surfactant-Substanz nicht mehr aus, um die ganze Innenfläche zu bedecken. Dann werden die freien Bereiche durch den hohen Wasserpartialdruck sofort mit einem Wasserfilm aus der Lungenatmosphäre bedeckt. Der Wasserfilm hat eine höhere Oberflächenspannung als die Surfactant-Substanz. Das führt nach Gl. 15 zum Druckanstieg in den sich ausdehnenden Alveolen und verhindert das Kollabieren der kleineren Alveolen. Aus der relativen Luftfeuchtigkeit allein kann nicht abgelesen

werden, wieviel Wasser der Atemluft zugeführt werden muss. Relevant ist die Luftfeuchtigkeit bei 37°C, die physiologische Luftfeuchtigkeit $f_{phys} = \frac{f}{f_{max}(37^{\circ}C)}$. Beispiel: An einem warmen Sommertag mit 25°C Luftemperatur und 15°C Taupunkt (vgl. Abb. 11) muss jeder m³ Atemluft mit circa 32 g H₂O angefeuchtet werden (für einen gesunden Sportler kein Problem).

Rechenaufgabe 5: Ein Marathonlauf soll an einem Wintertag mit einem Taupunkt von -10° C stattfinden. Bestimmen Sie anhand von Abb. 11, mit wieviel Wasser jeder m³ Atemluft angefeuchtet werden muss.

Damit wird zum Beispiel verständlich, warum man im Winter keinen Marathonlauf machen sollte. Es besteht die Gefahr, dass die Lunge austrocknet.

III. VERSUCHSAUFBAU UND GERÄTE

III.1. Zubehör

Quecksilbermanometer, Glashohlkugel, Metalltisch, Messbecher, Luftdruckbarometer, Thermometer, Apparatur zur Messung der Dampfdruckkurve mit wassergefülltem Kupfer-Druckgefäß auf Stativ, angeschlossenem Manometer zur Druckmessung und Temperaturfühler, Butangasbrenner

III.2. Versuchsaufbau zur Gasmechanik

Hauptbestandteil der Apparatur ist ein mit Quecksilber gefülltes **Manometer** (siehe Abb. 12, links). Seine beiden Schenkel sind durch einen Schlauch miteinander verbunden und können an einem Stativ aufund abwärts verschoben werden. Auf diese Weise lassen sich die Oberflächen der beiden Quecksilbersäulen in verschiedene Stellungen bringen. Beide Schenkel können über je ein Ventil belüftet werden. An einer Skala zwischen den beiden Schenkeln können die Höhen der Menisken³ abgelesen werden. An dem linken Schenkel kann über einen Flansch eine Glashohlkugel (Abb. 13) angeschlossen werden. Das Austreten von Quecksilber ist durch zwei Glasfritten (luftdurchlässige Glasfilter)

Abb. 12: Hg-Manometer zur Messung von Druckdifferenzen zwischen Glaskugel und Außenraum und Barometer zur Messung des Atmosphärendrucks

Abb. 13: Glashohlkugel

verhindert. Glasfritten sind an den Enden der beiden Schenkel unterhalb der Ventile eingebaut.

Der Atmosphärendruck wird an einem **Barometer** (Abb. 12, rechts) abgelesen. Zum Ablesen der Zimmertemperatur befindet sich im Labor ein Thermometer.

III.3. Druckmessung

Der Druck ist als Kraft pro Fläche definiert (vgl. FLU). Wenn eine Gas- bzw. Flüssigkeitssäule der Masse mauf die unterste Querschnittsfläche der Säule mit der **Schwerkraft** (mit der Gewichtskraft) F = mg drückt, wird **Schweredruck** erzeugt. Der Schweredruck ist gegeben durch

$$p = \frac{F}{A} = \frac{mg}{A}.$$
 (16)

³ Meniskus nennt man in der Physik die Wölbung der Oberfläche einer Flüssigkeit in einem Gefäß. Die Form des Meniskus hängt von der Oberflächenspannung der Flüssigkeit ab (vgl. FLU). Beim Ablesen der Höhe der Quecksilbersäule wird die Oberseite benutzt.

Abb. 14: Messung der Druckdifferenz zwischen Glashohlkugel und Außenraum mit dem Manometer: a)Atmosphärendruck: Gleichstand der Flüssigkeitssäulen;

b)Überdruck: rechte Säule steht höher als linke Säule; c)Unterdruck: linke Säule steht höher als rechte Säule; d)Messung des Atmosphärendrucks mit dem Barometer

d

In Fluidmechanik⁴ ist üblich, statt mit Kräften mit Drucken zu arbeiten. Dafür wird die Masse m eines Fluids, der das Volumen V besitzt, durch die Dichte ρ des Fluids ausgedrückt:

$$\rho = \frac{m}{V}, \ [\rho] = \frac{\mathrm{kg}}{\mathrm{m}^3} \tag{17}$$

Die Luftdichte bei Normalbedingungen ist z. B. 1,293 $\frac{\text{kg}}{\text{m}^3}$.

Durch Einsetzen von m aus Gl. 17 in Gl. 16 bekommt man für den Druck:

$$p = \frac{\rho V g}{A} = \frac{\rho A h g}{A} = \rho g h. \tag{18}$$

Die SI-Einheit für Druck ist $[p] = N/m^2$, auch Pascal (Pa) genannt. Zur Druckmessung eines Gases dient ein mit Quecksilber gefülltes Manometer (siehe Abb. 14). Es besteht aus zwei miteinander verbundenen Flüssigkeitssäulen. Der linke Schenkel ist mit dem Gasbehälter verbunden, dessen Druck gemessen wird. Das Gas drückt von oben auf den Flüssigkeitsspiegel. Je stärker der Druck, desto größer die Verschiebung des Flüssigkeitsspiegels. Da auf beide Flüssigkeitssäulen ein Gasdruck wirkt, können nur Differenzen von Drucken gemessen werden. (Druck in der Kugel und Atmosphärendruck). Im Druckgleichgewicht gilt:

$$p_{\rm links} = p_{\rm rechts}.$$
 (19)

Der Gesamtdruck auf jeder Seite ergibt sich aus der Summe des Gasdrucks und des Schweredrucks der Flüssigkeitssäule oberhalb des tiefsten Flüssigkeitsspiegels. Für die Verhältnisse in Abb. 14 gilt (von a nach c): Ideale Gase/Phasenübergänge - GAS

Abb. 15: Volumenvergrößerung durch Absenken des Quecksilberspiegels. Die linke Flüssigkeitssäule wird zur Deckung mit dem Nullpunkt gebracht (linkes Bild) und danach das Volumen durch Absenken vergrößert (rechtes Bild).

cm - Skala

zum Schlauch

$$p_0 = p_0, \tag{20}$$

cm - Skala

$$p_1 = p_0 + \rho g \Delta n_1, \tag{21}$$

$$p_2 + \rho g \Delta h_2 = p_0 \to p_2 = p_0 - \rho g \Delta h_2.$$
 (22)

Die Höhendifferenz Δh ist also ein Maß für den Druckunterschied zum Atmosphärendruck. Wegen der verbreiteten Nutzung des Hg-Manometers, wurde früher die Höhendifferenz (Δh in mm) direkt als Maßeinheit für Druck benutzt. Dabei ist 1 mmHg = 133,322 Pa (= 1 Torr).

Für die Bestimmung des Druckes in der Glaskugel muss der Atmosphärendruck p_0 bekannt sein. Er lässt sich mit dem in Abb. 12 gezeigten Barometer messen. Über dem inneren Flüssigkeitspegel befindet sich ein Vakuum mit dem Druck 0 Pa, d.h. die Höhendifferenz entspricht dem Druck auf dem äußeren Flüssigkeitspegel (vgl. Abb. 14d):

$$p_0 = \rho g h_0. \tag{23}$$

III.4. Volumenänderung

Das Volumen der Gasmenge kann durch Senken der linken Flüssigkeitssäule vergrößert werden. Die linke Flüssigkeitssäule sinkt, wenn der rechte Schenkel des Manometers abgesenkt wird. Die Volumenänderung ΔV wird mit Hilfe der cm-Skala am Stativ bestimmt. Der Nullpunkt ist direkt unter der Glasfritte, die durch ein Fensterchen sichtbar ist. Er ist auf dem Fensterchen händisch aufgemalt. Der Innendurchmesser des Röhrchens ist 12 mm, d.h. Senken des linken Quecksilberspiegels um $\Delta h_{\rm links} = 1$ cm entspricht einer Volumenvergrößung um 1,13 cm³ (vgl. Abb. 15).

⁴ Unter Fluide versteht man Gase und Flüssigkeiten.

Abb. 16: Spritze mit (zwei) blauen Kanülenhaltern und einem rotem Verschlussstopfen zum Heimversuch.

III.5. Versuchsaufbau zum Heimversuch

1. Versuchsgerät

Für den Heimversuch benötigen Sie (vgl. Abbildung 16):

- eine Einwegspritze mit mindestens 100 ml Volumen (wird gestellt).
- einen Kanülenhalter (wird gestellt).
- einen passenden Verschlussstopfen (wird gestellt).
- ein Lineal oder ein Geodreieck oder eine Schublehre.
- eine Tüte oder ein Beutel, die/der sich am Spritzenstempel verknoten lässt.
- mindestens fünf Massestücke (Massen minimal 500 g bis maximal gut 1500 g, insgesamt maximal 6 kg). Die Massenstücke sollten nicht zu groß sein, sodass sie gut in die Tüte passen. Die Tüte sollte bei Füllung nicht reißen. Die Massestücke können, müssen aber nicht alle gleich schwer sein. Beispiele: Packung Spaghetti, Dosen, diverse Getränkeflaschen (aus Sicherheits- und Gewichtsgründen besser aus Plastik).
- eine Küchenwaage.

2. Ablesemethode für das Volumen

Wenn sich das Luftvolumen in der verschlossenen Spritze durch äußeren Einfluss - z.B. Zug am Stempel - verändert $(V \rightarrow V')$, kann die Reibung des Stempels an der Spritzenwand den abgelesenen Wert für V' verfälschen. Deshalb müssen Sie jedes veränderte Volumen zwei Mal ablesen:

- Zuerst drücken Sie den Stempel leicht nach oben, lassen ihn los und lesen V' ab.
- Danach ziehen Sie den Stempel leicht nach unten, lassen ihn wieder los und lesen V' erneut ab.
- Der Mittelwert aus den beiden Ablesungen ergibt dann den eigentlichen Wert, die Schwankung ist die Unsicherheit.

III.6. Versuchsaufbau zur Messung der Dampfdruckkurve

Die Apparatur stellt eine geschlossene Einheit dar (Abb. 17). Das Kupfergefäß ist bis auf ein kleines Dampfvolumen vollständig mit Wasser gefüllt. Es wurde darauf geachtet, dass der mit Wasserdampf gefüllte Teil des Gefäßes keine Luft enthält. Das Zeigermanometer zeigt den Druck in bar an. Es gilt: 1 bar = 10^5 Pa. Das Erhitzen erfolgt mit zwei Butangasbrennern. Die Temperatur der Flüssigkeit wird mit einem

Abb. 17: Versuchsapparatur zur Messung der Dampfdruckkurve von Wasser

Platin-Widerstandsthermometer gemessen. Der Messfühler kann seitlich bis zur Mitte des Kupfergefäßes eingeschoben werden. Abb. 18 zeigt den inneren Aufbau des Messfühlers. Auf einem Keramik-Plättchen befinden sich mehrere aufgedampfte Platin-Schichten. Der elektrische Leiter ist in Magnesiumoxid gebettet, das ein elektrischer Isolator ist, aber ein guter thermischer Leiter. Der elektrische Widerstand von Platin ändert sich nahezu linear mit der Temperatur. Mit dem Widerstandsthermometer können Temperaturen von 0°C bis 250°C genau und reproduzierbar gemessen werden.

Abb. 18: Messfühler des Platin-Widerstandsthermometers

IV. VERSUCHSDURCHFÜHRUNG

Statt Teilversuch 1 und 2 kann alternativ auch Teilversuch 3 im Heimversuch durchgeführt werden.

IV.1. Volumenbestimmung der Glashohlkugel und Überprüfung der Apparaturdichtigkeit

1. Kurzbeschreibung

Sie bestimmen das Volumen der später benötigten Glaskugel durch Eintauchen in Wasser über die Wasserverdrängung.

Anschließend überprüfen Sie, ob das verwendete Manometer dicht ist: Sie schließen in der Glaskugel Luft mit Atmosphärendruck ein. Durch Absenken des rechten Manometerschenkels sind linker und rechter Quecksilbermeniskus auf unterschiedlicher Höhe. Das eingeschlossene Volumen hat nicht mehr Atmosphärendruck. Bleibt dieser Druckunterschied, ist das Manometer dicht.

2. Messgrößen und Durchführung

1. Volumenbestimmung der Glaskugel

- Das Volumen der Glashohlkugel (Abb. 13) wird durch Eintauchen in das mit Wasser gefüllte, große Messglas bestimmt. Dies geht am besten, wenn Sie das Messgefäß auf der Aluminiumplatte, die Sie auf dem Tempererierbad platzieren, abstellen.
- Benutzen Sie destilliertes Wasser aus dem Wasserbad (ca. 300 ml). Bei dieser Messung wird die Wanddicke der Glashohlkugel vernachlässigt. Achten Sie darauf, dass kein Wasser in das Kugelgefäß gelangt. Der Unterschied des Wasserstands, abgelesen in $cm^3(=ml)$ ergibt das Volumen der Kugel.
- Notieren Sie den Wasserstand im Messglas vor und nach dem Eintauchen der Glashohlkugel. Schätzen Sie die Genauigkeit der Messung ab.
- Trocknen Sie die Kugel gut und vorsichtig ab und schließen Sie diese (Abb. 13) über die Kapillare an den linken Schenkel an (Abb. 12).

2. Überprüfung der Dichtigkeit der Apparatur

- Beide Luftventile (an beiden Manometerschenkeln) sollten offen sein. Das rechte bleibt bis zum Ende der Versuche offen (Atmosphärendruck am rechten Manometerschenkel).
- Schieben Sie den linken Schenkel nur so weit es geht nach oben - Schieben "bis zum Anschlag" zerstört den Verbindungsschlauch zur Glashohlkugel. Die Glaskugel müssen Sie dazu "mitnehmen". Bitte vorsichtig.
- Schieben Sie nun auch den rechten Manometerschenkel ganz nach oben.
- Schrauben Sie das Lüftungsventil des linken Schenkels zu.
- Schieben Sie nun den rechten Manometerschenkel so weit wie möglich nach unten.
- Der Niveauunterschied der Menisken muss danach über eine Minute unverändert bleiben. Wenn das nicht der Fall ist, ist die Apparatur undicht und Sie müssen Anschlüsse und Dichtungen überprüfen.

IV.2. Isotherme Zustandsänderung: Überprüfung des Boyle-Mariotteschen Gesetzes

1. Kurzbeschreibung

In einer Glaskugel – und im Lauf des Versuches auch im linken Schenkel des angeschlossen Manometers – ist Luft eingeschlossen. Senkt man den rechten Schenkel des Manometers ab, so sinkt auch der Quecksilberpegel im linken Schenkel. Das Volumen der eingeschlossenen Luft nimmt zu. Dies wiederholen Sie mehrfach und messen nach jeder Änderung Volumen und Druck der eingeschlossenen Luft.

2. Messgrößen und Durchführung

- Öffnen Sie das linke Lüftungsventil. Der linke Schenkel bleibt zuerst ganz oben.
- Schieben Sie auch den rechten Manometerschenkel wieder ganz nach oben.
- Auf dem linken Schenkel ist oben ein kleines Fenster mit einem händisch angebrachten Markierungsstrich (Nullmarke). Verschieben Sie nun den linken Manometerschenkel nach unten, bis der linke Meniskus mit der Nullmarke zur Deckung kommt.
- Beide Menisken sollten nun auf gleicher Höhe stehen. In der Glaskugel herrscht jetzt Umgebungsdruck. Schließen Sie das linke Lüftungsventil. Es bleibt während des gesamten Versuchs geschlossen. (Sonst Gasfluss aus der / in die Glaskugel!)

Abb. 19: Versuchsaufbau und Zubehör zum Teilversuch IV IV.2.

• Lesen Sie die Höhen der Menisken $h_{0,\text{links}}$ und $h_{0,\text{rechts}}$ auf der mittleren Millimeterskala am Stativ ab (Abb. 15). Hier hilft Ihnen der verschiebbare Reiter: Oberseite (oder Unterseite) auf Höhe des Meniskus legen und die Position der Oberseite (oder Unterseite) an der Skala ablesen.

Sie benutzen nun das Manometer als Pumpe: Durch **Absenken** des rechten Manometerschenkels wird das von der Quecksilbersäule abgeschlossene Gasvolumen im **linken** Schenkel in zehn Schritten um jeweils 2 bis 3 cm³ vergrößert:

- Senken Sie im ersten Schritt den rechten Manometerschenkel soweit ab, dass der linke Meniskus etwas unter dem Stahlrahmen der Glasfritte liegt.
- Lesen Sie die Höhen der Menisken $h_{1,\text{links}}$ und $h_{1,\text{rechts}}$ auf der mittleren Millimeterskala am Stativ ab. Benutzen Sie wieder den Reiter.
- Senken Sie nun den rechten Manometerschenkel in Schritten von 2 bis 3 cm ab und lesen Sie nach jedem Schritt die Höhen der Menisken $h_{i,\text{links}}$ und $h_{i,\text{rechts}}$, (i = 2,...,10) ab. Dies wiederholen Sie, bis Sie 11 Wertepaare (0, ... 10) haben.

Abb. 20: Mit Kanülenhalter und Stopfen verschlossene Spritze.

- Notieren Sie diese Wertepaare in einer Tabelle.
- Lesen Sie den Atmosphärendruck am Barometer ab.
- \bullet Lesen Sie die Raumtemperatur am Thermometer ab. 5

Alternativ zu Teilversuch 1 und 2:

IV.3. Isotherme Zustandsänderung: Überprüfung des Gesetzes von Boyle-Mariotte im Heimversuch

Die LMU München haftet nicht für beim Versuch verursachte Schäden!

1. Kurzbeschreibung

In einer Einwegspritze ist Luft eingeschlossen. An den Stempel der Spritze werden Massestücke angehängt. Das Volumen der eingeschlossenen Luft nimmt zu. Dies wiederholen Sie mehrfach und notieren jedes Mal die angehängte Masse und das Volumen der eingeschlossenen Luft.

⁵ Hilfsvideo zum Teilversuch: https://www.youtube.com/watch?v=3xHD8YINtyM

Abb. 21: Durchführung des Heimversuchs mit solidem 25-l-Müllbeutel und mehreren Plastikflaschen.

2. Messgrößen und Durchführung

• Recherchieren Sie im Internet – z. B. für München unter https://www.meteo.physik.uni-muenchen.de/mesomikro/stadt/messung.php – den Atmosphärendruck p_0 . Achtung: Der

Atmosphärendruck wird auf vielen Webseiten reskaliert auf Normalnull (NN) angegeben. Sie brauchen aber den realen auf der entsprechenden Höhe über NN.

Falls Sie ein Barometer haben, können Sie dort den Atmosphärendruck ablesen.

- Messen Sie den Durchmesser d des Spritzenstempels.
- Verknoten Sie die Plastiktüte am Haltering des Spritzenstempels. Achten Sie darauf, dass der Knoten fest ist, Sie aber die Tüte noch mit den Massenstücken befüllen können.
- Wiegen Sie die einzelnen Massenstücke und notieren Sie die Massen.
- Ziehen Sie die Spritze auf 30 ml auf.
- Nun verschließen Sie die Spritze, in dem Sie einen blauen Kanülenhalter auf die Spritze und auf diesen den roten Pfropfen aufsetzen (vgl. Abbildung 20)
- Legen Sie ein Massestück in die Plastiktüte und halten Sie die Spritze so, dass die Tüte mit dem Massestück frei hängt (vgl. Abbildung 21). Es empfiehlt sich, aus Sicherheitsgründen dies knapp über einer Tischplatte oder dem Boden durchzuführen.

- Führen Sie wie in III III.52 beschrieben die Volumenmessung durch.
- Notieren Sie sich auch die Masse des Massestücks.
- Wiederholen Sie den Vorgang mit mehreren Massenstücken, sodass Sie insgesamt mindestens fünf verschiedene Masse-Volumen-Wertepaare erhalten.

IV.4. Isochore Zustandsänderung: Bestimmung der Lage des absoluten Temperaturnullpunktes

1. Kurzbeschreibung

Sie verändern die Temperatur der Luft in der Glaskugel und messen den Druck, wobei das Luftvolumen konstant gehalten wird. Aus der sich ergebenden θ -p-Gerade bestimmen Sie den absoluten Nullpunkt.

2. Messgrößen und Durchführung

1. Abkühlung auf $\theta = 0^{\circ}$ C, Einstellen von $p = p_{\text{aussen}}$ und $\Delta V = 0$

- Füllen Sie das Temperierbad mit Eis und destilliertem Wasser. Stellen Sie den Rührer auf ca. 200-300 Umdrehungen pro Minute ein. Messen Sie die Temperatur des Eis-Wasser-Gemisches mit dem Platin-Widerstandsthermometer.
- Schieben Sie den rechten Schenkel möglichst weit nach unten.
- Belüften Sie den linken Schenkel.
- Schieben Sie den linken Schenkel so weit nach unten, dass Sie die Glaskugel bequem ganz in das Eiswasser (Temperierbad auf Podest) eintauchen können.
- Bringen Sie beide Menisken durch Bewegen des rechten Schenkels wieder auf gleiche Höhe (kein Druckunterschied zum Außenraum).
- Bringen Sie durch Verschieben des rechten Manometerschenkels den linken Quecksilbermeniskus mit der Nullmarke zur Deckung $(\Delta V = 0)$ - warum ist das wichtig? (Antwort bitte ins Protokoll.)
- Wenn Sie davon ausgehen können, dass das in der Kugel eingeschlossene Luftvolumen die Temperatur $\theta = 0^{\circ}$ C angenommen hat (dies geschieht recht schnell), schließen Sie das linke Belüftungsventil. Es darf nun nicht mehr geöffnet werden, da sich sonst die Gasmenge ändert.

Sie haben mit diesen Schritten einen definierten Anfangszustand bezüglich der Zustandsgrößen Druck, Temperatur und Volumen für die weiteren Messungen hergestellt. Welche Werte nehmen diese Größen jetzt ein (bitte ins Protokoll aufnehmen)?

- 2. Schrittweise Erwärmung auf $\theta = \theta_S$, zuerst Einstellen von $\Delta V = 0$ und danach Ablesen von h_{rechts} (h_{links} bleibt konstant)
 - Entfernen Sie mit der kleinen Schaufel weitgehend das Eis aus dem Temperierbad und füllen Sie gegebenenfalls destilliertes Wasser nach.
 - Stellen Sie das Temperierbad auf 20°C ein. Wenn die Isttemperatur konstant angezeigt wird, notieren Sie diese.
 - Die eingeschlossene Luft in der Kugel erwärmt sich bis auf $\theta = 20^{\circ}$ C. Wenn die Menisken einen stabilen Stand erreicht haben ($\theta = 20^{\circ}$ C), wird der linke Meniskus durch Anheben des rechten Schenkels wieder in die Ausgangsposition gebracht ($\Delta V = 0$, isochore Zustandsänderung). Die Höhendifferenz der Menisken liefert die Druckänderung Δp gegenüber dem Außendruck. Obwohl der linke Hg-Stand wieder der gleiche sein sollte, notieren Sie bitte beide Werte.
 - Wiederholen Sie diese Messungen bei 40°C, bei 60°C, bei 80°C und bei Siedetemperatur.

3. Beenden Sie den Versuch wie folgt:

- Verschieben Sie die Glaskugel so weit nach oben, dass sie oberhalb des Wasserbads ist.
- Senken Sie den rechten Manometerschenkel so weit ab, bis der rechte Meniskus tiefer liegt als der linke.
- Öffnen Sie das linke Lüftungsventil.
- Schließen Sie beide Ventile.⁶

IV.5. Ermittlung der Dampfdruckkurve reinen Wassers

1. Kurzbeschreibung

In einem Gefäß sind Wasser und Luft abgeschlossen. Sie erhitzen dies stark und messen den Temperatur-Druck-Verlauf.

2. Messgrößen und Durchführung

• Schieben Sie seitlich den Platin-Widerstandstemperaturfühler in die vorgesehene Öffnung des Kupferzylinders (vgl. Abb. 17).

Abb. 22: Versuchsaufbau und Zubehör zum Teilversuch IV IV.5.

- Öffnen Sie das Gasventil (eine Umdrehung) des einen Butangasbrenners und zünden Sie ihn an, anschließend den zweiten. Verwenden Sie zum Anzünden des zweiten Brenners **keinesfalls** die Flamme des ersten (Gefahr einer Stichflamme)!
- Betreiben Sie beide Butangasbrenner auf höchster Stufe.
- Notieren Sie 25 zusammengehörige Druck-Temperatur-Wertepaare. Sie beenden die Messung bei 50 bar.
- Zum Beenden schieben Sie die Brenner zur Seite und drehen Sie sie ab. Berühren Sie keinesfalls den Druckbehälter und die Metallschleife beim Manometer! Sie sind ca. 300°C heiß. Der Druck sinkt dann ab.
- Beachten Sie, dass das Manometer Überdruck anzeigt. Das Manometer zeigt also null bei Atmosphärendruck an, der ja in etwa 1 bar entspricht. Sie müssen also beim Auswerten jeweils 1 bar zum angezeigten Wert hinzuzählen, wenn Sie Absolutdrucke erfassen wollen. Vermerken Sie dies in Ihrem Protokoll.

V. AUSWERTUNG

V.1. Vorbereitung

Berechnen Sie das Volumen der Kugel aus Ihren Messdaten.

V.2. Isotherme Zustandsänderung: Überprüfung des Boyle-Mariotteschen Gesetzes

Berechnen Sie für jede Einstellung i, (i=0, 1, 2, ..., 10) aus den Höhen der beiden Menisken die Höhendifferenz Δh_i = h_{i,rechts} - h_{i,links} und tragen Sie diese in Ihre Tabelle ein. Die Differenz der

 $^{^6}$ Hilfsvideo zum Teilversuch: https://ttps://www.youtube.com/watch?v=K_gsUrg0d3k

beiden Höhen Δh_i ergibt die Druckänderung Δp_i gegenüber dem äußeren Luftdruck in der Einheit mmHg.

- Rechnen Sie die Höhenänderungen $h_{i,\text{links}} h_{0,\text{links}}, (i = 0, ..., 10)$ der linken Menisken in Volumenänderungen ΔV_i um (1 cm entspricht 1,13 cm³) Das Ergebnis besteht aus den verschiedenen Wertepaaren ΔV_i mit den zugehörigen Druckdifferenzen Δp_i .
- Berechnen Sie $V_i = V_{Kugel} + \Delta V_i$ (in cm³) und $p_i = p_{auen} \Delta p_i$ (in mmHg) und tragen Sie diese in Ihre Tabelle ein.
- Tragen Sie p gegen 1/V in einem Diagramm auf (oder 1/p gegen V, das ergibt gleich weite Schritte auf der x-Achse wie Sie wollen) und überpüfen Sie die Gültigkeit des Boyle-Mariotteschen Gesetzes pV = const. (Gl. (10)). Bei welcher Temperatur findet die Zustandsänderung statt?

Alternativ zu TV 1 und 2:

V.3. Isotherme Zustandsänderung: Überprüfung des Gesetzes von Boyle-Mariotte im Heimversuch

Die angehängten Massestücke mit Gesamtmasse m haben eine Gewichtskraft $F = m \cdot g$, die auf die Querschnittsfläche $A = \left(\frac{d}{2}\right)^2 \cdot \pi$ des Stempels wirkt. Dies erzeugt einen Druck $p_M = \frac{F}{A} = \frac{m \cdot g}{(d/2)^2 \cdot \pi}$. Ohne Belastung herrscht in der Spritze der Atmosphärendruck p_0 , mit Belastung also der (Unter-)Druck

$$p = p_0 - p_M = p_0 - \frac{m \cdot g}{(d/2)^2 \cdot \pi}.$$
 (24)

- Bestimmen Sie zu jeder Ihrer Belastungen den Druck *p* in der Spritze gemäß Gleichung 24.
- p_0 und V = 30 ml (Situation ohne Belastung) ist ein weiteres Wertepaar.
- Tragen Sie für alle Wertepaare p gegen $\frac{1}{V}$ in einem Diagramm auf (oder $\frac{1}{p}$ gegen V, das ergibt gleich weite Schritte auf der Rechtswertachse wie Sie wollen) und überpüfen Sie die Gültigkeit des Gesetzes von Boyle-Mariotte $p \cdot V = \text{const.}$ (Gleichung (10)).

V.4. Isochore Zustandsänderung: Bestimmung der Lage des absoluten Temperaturnullpunktes

- Aus den gemessenen Höhen der Menisken berechnen Sie die Höhenunterschiede $\Delta h_i = \Delta p_i$ für die sechs Temperaturmesswerte θ_i , i=0,1,...,5.
- Aus den berechneten Höhenunterschieden und dem aktuellen Luftdruck p_0 berechnen Sie die sechs Druckwerte $p = p_0 + \Delta p_i$ für die sechs Temperaturmesswerte θ_i , i=0,1,...,5.

- Fertigen Sie auf Millimeterpapier ein p/θ -Diagramm an. Die θ -Achse muß so weit ins Negative reichen, dass der Punkt -273° C noch gut auf dem Papier liegt (vgl. Abb. 4). Die *p*-Achse muss bei p = 0 beginnen.
- Tragen Sie die sechs Wertepaare $(p_i; \theta_i)$ in das Diagramm ein.
- Legen Sie eine Ausgleichsgerade durch die Messpunkte und extrapolieren Sie sie nach links bis zum Schnittpunkt mit der θ -Achse. Dort lesen Sie den Wert für den absoluten Nullpunkt ab.
- Für die Unsicherheit betrachten Sie die Schnittpunkte der extrapolierten Fehlergeraden mit der θ -Achse. Vergleichen Sie Ihr Ergebnis mit dem Literaturwert -273° C. Überlegen und schildern Sie in wenigen Worten, wo bei der Versuchsdurchführung systematische Unsicherheiten aufgetreten sein können, die eine Abweichung vom Literaturwert verursachen (Hinweis: Wie stark haben Sie extrapoliert? Was bedeutet dies für kleine Abweichungen bei der Steigung der Ausgleichsgerade?).

V.5. Ermittlung der Dampfdruckkurve reinen Wassers

- Zeichnen Sie die Dampfdruckkurve auf Millimeterpapier. Achten Sie auf vernünftige Skalierung (Beginn der Temperaturskala z.B. ca. bei 120°C).
- Erläutern Sie, warum Sie hier im Gegensatz zur idealen Gasgleichung keine Gerade erhalten.

VI. ANHANG

VI.1. Dichteanomalie des Wassers

Beim Erwärmen eines Stoffes der Masse m erhöht sich im Normalfall sein Volumen V, d.h. seine Dichte $\rho = m/V$ wird kleiner. Beim Erwärmen von Wasser im Bereich von 0°C bis 4°C nimmt aber die Dichte zu. Diese einzigartige Erscheinung nennt man Dichteanomalie des Wassers. Die Dichtezunahme beträgt kaum 0,1 Promille, hat aber dennoch entscheidende Konsequenzen.

Die Dichteanomalie ist für das Leben im Wasser von großer Bedeutung. Sie ist die Ursache dafür, dass Seen selbst im tiefen Winter niemals bis zum Grund zufrieren. Kühlt nämlich die Oberfläche des Sees ab, so sinkt das kältere Wasser wegen seiner höheren Dichte nach unten (vgl. Abb. 23). Bei Temperaturen unter 4°C kühlt das Wasser an der Oberfläche zwar weiter ab, sinkt aber nicht nach unten, weil dort bereits Wasser mit größerer Dichte lagert. Da sich Wasser beim Gefrieren weiter ausdehnt (die Dichte von Eis also kleiner als die von Wasser ist) friert der See von oben her zu. Der See kühlt jetzt nur noch durch Wärmeleitung ab. Das geht aber so langsam vor sich, dass im allgemeinen der Frühling

Abb. 23: Dichteanomalie des Wassers: Temperaturschichtung in einem See bei $0^{\circ}\mathrm{C}$ Lufttemperatur.

Abb. 24: : Eis hat eine kleinere Dichte als Wasser: Eisberge schwimmen (aus German Wikipedia).

anbricht, bevor es für das Leben im Wasser problematisch wird. Die kleinere Dichte von Eis im Vergleich zu der von Wasser erklärt auch, warum Eisberge im Wasser schwimmen (Abb. 24).